On Classification with Incomplete Data

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Incomplete Data Decomposition for Classification

In this paper we present a method of data decomposition to avoid the necessity of reasoning on data with missing attribute values. The original incomplete data is decomposed into data subsets without missing values. Next, methods for classifier induction are applied to such sets. Finally, a conflict resolving method is used to combine partial answers from classifiers to obtain final classificat...

متن کامل

Improving Multilabel Classification by Avoiding Implicit Negativity with Incomplete Data

Many real world problems require multi-label classification, in which each training instance is associated with a set of labels. There are many existing learning algorithms for multi-label classification; however, these algorithms assume implicit negativity, where missing labels in the training data are automatically assumed to be negative. Additionally, many of the existing algorithms do not h...

متن کامل

Bagging and Feature Selection for Classification with Incomplete Data

Missing values are an unavoidable issue of many real-world datasets. Dealing with missing values is an essential requirement in classification problem, because inadequate treatment with missing values often leads to large classification errors. Some classifiers can directly work with incomplete data, but they often result in big classification errors and generate complex models. Feature selecti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Pattern Analysis and Machine Intelligence

سال: 2007

ISSN: 0162-8828,2160-9292

DOI: 10.1109/tpami.2007.52